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LETTER TO THE EDITOR 

A time-dependent approach to conductance in narrow 
channels 

K Stratford and J L Beeby 
Departmen1 of Physics and Astronomy, University of Leicester. URiversity Road, Leicester 
LEI 7RH. UK 

Received 1 March 1993, in final form 30 March 1993 

Abstract. An application of the time-dependent ScWinger equation IO the numerical 
evaluation of the conductance of a quantum point contacl is desdbed. For this purpose a 
single elecmon a ~ e r o  temperature is represented by a Gaussian wave packet. Results are 
presented for a simple point contact geometty with a smoothly varying confining potential. The 
flexibility in choice of the model potential could make the approach suitable for a wider range 
of similar problems. 

A common approach to dynamical problems in quantum mechanics is to evaluate the 
elements of the scattering matrix for the time-independent SchrUdinger equation. To this 
end the full wave function must be approximated as a combination of a finite number of 
(often plane wave) basis states. The accuracy of the calculation will then depend essentially 
upon this number being sufficiently large. For physical problems in which the potential is 
of a complicated form, such as an atom or molecule scattering from a surface, the number 
of basis states required in the expansion of the wave function can become very large. The 
numerical effort then required either to diagonalize the Hamiltonian for the problem (a 
process which scales as the cube of the number of basis states) or to evaluate the transfer 
matrices can become impractical when only limited computational resources are available. 
For this reason it is of some interest to consider methods which can give useful results 
without recourse to demanding numerical calculations on large machines. 

For physical problems in which it is desirable to study the effect of a realistic model 
potential the alternative of a time-dependent approach may be adopted. This is of particular 
value in the case of ballistic transport in quantum wires where the exact geometry and form 
of the potential defining the constriction has proved to be very important. Time-dependent 
methods can offer the advantage of allowing problems which may be computationally 
expensive or difficult in terms of a scattering matrix calculation to be performed in a 
simple, but effective and efficient manner. 

The integration of the time-dependent Schriidinger equation (TDSE) can be implemented 
by means of highly optimized Fourier fransfom methods which allow the application of the 
individual operators appearing in the Hamiltonian in the representation in which they are 
diagonal. A number of propagation schemes are available at the present time (for a review 
of time-dependent methods see, for example, [l]). It is the purpose of this letter to illustrate 
the method by describing its use for the evaluation of the conductance of a quantum point 
contact in two dimensions and present the results for three simple model potentials. 
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Transport problems in mesoscopic systems are often treatable in a single-electron 
calculation by adopting an effective mass Hamiltonian 

where Vex&, y) is the two-dimensional artificial potential landscape in which the electron 
is forced to move. A GaAs effective mass of m’=0.067 is used for the present calculations. 
Since the first reports [Z, 31 of the quantization of point contact conductance in integer units 
of the quantity 2e2/h ,  a number of calculations have been performed for various geometries 
and confining potentials [e]. Typical is the so-called wide-narrow-wide geometry in 
which the point contact is defined by abrupt changes in the width of a hard wall potential. 
The use of an abruptly changing potential causes the appearance of artificial ‘organ-pipe’ 
resonances in the familiar conductance staircase which arize from strong reflections from 
the ends causing interference between left- and right-going waves. If the wave function 
is allowed to evolve adiabatically [IO] in  the presence of a potential smooth on the scale 
of the Fermi wavelength such interference is not expected. Indeed, calculations involving 
a smoothly varying confining potential [ I l l  do not exhibit resonance structure. This is 
in accord with typical experimental observations at low temperatures where one does not 
expect see such features. 

The integration of the TDSE is an initial value problem in contrast to the boundary 
value problem presented by the calculation of the scattering matrix. This requires that a 
suitable, spatially localized, initial wave function must be chosen. The problem is set up on 
a discrete rectangular grid made up of a total of N points. For the calculations presented 
here a standard normalized Gaussian wave packet with circular symmetry is selected 

Q ( ~ ,  y; = 0) = ~ ~ ~ ~ ~ ~ - ~ ~ e - ~ ~ - ~ ~ ~ 2 / ~ s ’ e a , i e - ~ ~ - y o 1 ” e i ~ ~ ~  (2) 

This wave packet has a finite width in both real and momentum space, the width in real 
space being set by the parameter S which is subject to two constraints in these calculations. 
First, the wave packet should not be so wide in momentum space that significant spreading 
occurs in real space during the time of interest. The second condition on 6 is that the width 
of the packet in real space must be large enough that it  does not pass straight through the 
point contact as a classical particle. It is clear that these two conditions on the size of 
the wave packet are not incompatible. In practice, the width 8 is taken to be a factor of 
approximately three or four times greater than the width of the point contact. The energy of 
the wave packet is taken to be free-electron-like with the wave vector equal to the cenhai 
component of the momentum space packet k = (kx>  k& This assumes that the internal 
energy of the wave packet is negligible. The effect of the spread of energies in the wave 
packet (which is not assumed to be negligible) on the results is discussed later. 

The general form of the artificial confining potentia1 V&r, y) is parabolic in the y- 
direction and has its width smoothly varied at the ends to provide a non-abrupt geometry. 
The nominal width of the point contact is taken to be twice the classical turning point of the 
harmonic oscillator ground state at the middle of the constriction. The initial wave function 
(2), initially placed in a region of zero potential, is propagated through the potential until 
such a time as the transmitted and reflected portions of the packet are clearly resolved. The 
transmission coefficient for given incident wave vectors can then be evaluated by means of 
a numerical integration of I ~ ( x ,  y,  tfi,)I2 over that part of the grid containing the transmitted 
fraction of the wave packet. Alternatively, the transmission may be obtained by calculating 
the total probability flux passing through the point contact after each time step of the 
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propagation and calculating the total at the end of the simulation by means of an integration 
over time. The latter method allows the use of a smaller grid and is employed for these 
calculations. The propagation scheme due to Fleck et a1 [12.13], which is a many-step 
scheme, is utilized for this purpose. The numerical cost of calculation scales as N log N 
(from fast Fourier transform) multiplied by the number of time steps required (inversely 
proportional to the group velocity of the wave packet). 

The value of the transmission coefficient will clearly be dependent upon the direction 
of motion of the wave packet when it strikes the opening of the channel. In order to 
evaluate the conductance of the point contact the transmission is calculated for a number 
of incident directions. This quantity, weighted by a factor of is integrated over all 
incoming directions in a process which is equivalent to calculating the conductance with 
the two-terminal Landauer formula [14]. The effect of the wave packet is included by the 
introduction of a factor related to the flux incident on the channel. Details of this part of 
the calculation will appear elsewhere [ 151. However, it should perhaps be stressed here that 
only a small number of simulations are required for the calculation of the conductance for a 
given wave packet energy, the contribution to the total being very small for shallow angles 
of incidence compared to that from more ‘head-on’ incidence. 

The calculation of the conductance as a function of the wave packet energy has been 
carried out for fixed point contact width on a grid of 512x 128 points. The nominal width 
of the channel for the results shown in figure 1 was approximately 40 A. Three different 
channels with length-to-width ratios of 3:1, 5 1 ,  and 1 0 1  are considered, all exhibiting the 
familiar conductance staircase. The accuracy of the quantization in units of the fundamental 
2 e 2 / h  is good to approximately I-2% . It is clear from the figure that quantization is better 
defined for the longer channels, a fact that may be explained simply in terms of the time 
that the wave function has to experience the potential. The improvement in the quality of 
the quantization with length-to-width ratio is well documented (see, for example, [6,7]). As 
the sides of the confining potential are smooth on the scale of the electron wavelength, the 
wave function is allowed to move into the constriction adiabatically with no extra structure 
due to monances arising. However, some broadening of the conductance steps will have 
taken place due to the energy spread in the wave packet which should be accounted for. 

The exact expression for the energy spread in a wave packet which is Gaussian in 
momentum space can be written (ignoring factors of h2/2m’ for convenience) 

where Eo is the central energy and lo is a modified Bessel function. The smallest value of 
the energy of interest in this calculation is that associated with the first conductance step 
when a typical value of the argument 4 @ m  is large (of order IOz). In this situation we 
may employ an asymptotic expansion of Io which yields 

It can be seen that this function is essentially Gaussian in f i  modified by a prefactor which 
is rather weakly dependent upon E .  A deconvolution of the conductance as a function of 
energy may be effected with the aid of (4) to give an indication of the residual broadening 
which can be attributed to the geometry of the point contact. For numerical purposes this 
deconvolution is achieved by evaluating the convolution of the exact expression (4) with 
a model step function having parameters to control the position and width of each step. 
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Figure 1. Conduclance as a function of wave packet energy for systems with length-to-width 
ratios (a) 31.  (b) 51. and (c) 101.  The deconvoluted stsulfs are also shown (dotted c w e d  to 
give an impression of the residual broadening due lo the geomerry (schematic inset). 

The model functions giving the best fit to the numerical results are also shown in figure 1. 
Comparing the two sets of curves it can be seen that the degree of broadening is not greatly 
affected, demonstrating that the energy spread of the wave packet has not unduly distorted 
the results. 

As an illustration of the power of the method the effect of placing an obstacle or impurity 
in the channel is shown in figure 2. The width of the point contact is slightly greater in 
this case (N 45 A) while the length-to-width ratio will be from now on 1O:l. A scatterer 
of finite spatial extent is placed initially at the centre of the channel. The satterer was 
chosen to be Gaussian in profile and have a strength large enough to make its presence 
felt over energies corresponding to the first few conductance steps. As the position of the 
scatterer in the direction perpendicular to the length of the channel is changed (moved away 
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from the cenhe) it afiects the conductance in a manner which is dependent upon both the 
position and the particular step. Close inspection of figure 2 shows that the f i s t  and third 
steps become sharper as the scatterer is moved away From the centre ((a)+(e)) whereas 
the second step is degraded. This may be understood by a consideration of the form of 
the transverse bound state wave functions in the absence of the scatterer, $ A y ) .  In a long, 
unobstructed channel the energies of these states would precisely define the step positions. 
For odd-numbered states, with the lowest being n =  1, I&(y)Iz is large at the centre of the 
channel, while for even-numbered states [&(y)I2 is negligible at the centre. The effect of 
the scatterer on the quality of a given step is then greatest when the scatterer resides in a 
position corresponding to a maximum of I & ( Y ) ~ ~  and least at a minimum, exactly as seen 
in figure 2. 

The results shown in figure 2 illustrate a further point which should be mentioned at 
this stage. This is that the accuracy of the quantization in the third step can be seen to be 
poorer than that of the first and second steps. The cause is an insufficient number of points 
on the grid to provide a good representation of the more highly modulated wave function 
associated with the higher harmonics within the confining potential. If desired this can be 
remedied by taking a smaller grid spacing in the transverse direction. 

Figure 2. A similar geomemy with a scattering potential 
(shown inset) initially iu the centre of the channel (a). 
The position of Ihe scaterer is moved in the direction 
perpendicular to the length of the channel (away from 
the centre). The distances are (b) 5A, (c) IOA,  (d) 
15 A, and (e) 20 A. Note how the effect varies f” 
step to step. 

ENERGY lev) 

Figure 3. The effect of splitting the channel along 
its cenwl axis wiIh a potentia! banier. The ratios of 
Ihe banier length la the width of the new channels are 
approximately (a) 1 %  (b) 1:1, and (c) 4:l. Curve (c) 
shows clearly the loss of the conductance step al2e’lh. 
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Figure 3 shows the effect of placing a ‘partition’ of varying length in the centre of the 
same channel thus creating two narrower channels. As the length of the partition increases 
compared to that of the width of the new channels, the conductance step at 2e2/h is lost 
and is replaced by a single step at twice the original value. This corresponds to a situation 
which may be thought of as two parallel channels of the same width in each of which 
the onset of conductance occurs at a higher energy than for the single wider channel. It 
is found that the transition from quantization at one to two units of 2ez /h  is rapid as the 
length of the dividing banier exceeds the width of the new channel, providing the banier is 
high enough (the maximum value of the potential corresponding to an energy greater than 
that of the original conductance steps). This figure could also be described approximately 
in the terms used to explain figure 2. The second step is little changed throughout because 
the partition sits at a zero of l&(y)Iz while the first and third steps are degraded due to the 
associated maxima of 1~L(y)12 and l$3(y)l2. 

In summary, a numerical method for the calculation of the conductance of point contacts 
defined by an artificial potential landscape has been outlined. Results for simple model 
potentials show conductance quantization free of the structure associated with abruptly 
varying constrictions. The time-dependent method allows realistic potentials to be studied 
at relatively modest computational expense, the flexibility in the choice of potential giving 
scope for the study of a diverse range of problems. Furthermore, propagation schemes exist 
which will allow the inclusion of a magnetic field [15]. 

The authors gratefully acknowledge helpful discussions with S Holloway. One of us (KS) 
received financial support from the UK Science and Engineering Research Council while 
this work was in progress. 
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